[116] | 1 | /* |
---|
| 2 | * TSPSG: TSP Solver and Generator |
---|
| 3 | * Copyright (C) 2007-2010 Lёppa <contacts[at]oleksii[dot]name> |
---|
| 4 | * |
---|
| 5 | * $Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $ |
---|
| 6 | * $URL: https://tspsg.svn.sourceforge.net/svnroot/tspsg/trunk/src/tspsolver.cpp $ |
---|
| 7 | * |
---|
| 8 | * This file is part of TSPSG. |
---|
| 9 | * |
---|
| 10 | * TSPSG is free software: you can redistribute it and/or modify |
---|
| 11 | * it under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 13 | * (at your option) any later version. |
---|
| 14 | * |
---|
| 15 | * TSPSG is distributed in the hope that it will be useful, |
---|
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 18 | * GNU General Public License for more details. |
---|
| 19 | * |
---|
| 20 | * You should have received a copy of the GNU General Public License |
---|
| 21 | * along with TSPSG. If not, see <http://www.gnu.org/licenses/>. |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | #include "tspsolver.h" |
---|
| 25 | |
---|
| 26 | //! \internal \brief A short for maximum double, used internally in the solution algorithm. |
---|
| 27 | #define MAX_DOUBLE std::numeric_limits<double>::max() |
---|
| 28 | |
---|
| 29 | namespace TSPSolver { |
---|
| 30 | |
---|
| 31 | /*! |
---|
| 32 | * \brief Returns CTSPSolver's version ID. |
---|
| 33 | * \return A string: <b>\$Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $</b>. |
---|
| 34 | */ |
---|
| 35 | QString CTSPSolver::getVersionId() |
---|
| 36 | { |
---|
[149] | 37 | return QString("$Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $"); |
---|
[116] | 38 | } |
---|
| 39 | |
---|
| 40 | /*! |
---|
| 41 | * \brief Constructs CTSPSolver object. |
---|
| 42 | * \param parent A parent object. |
---|
| 43 | */ |
---|
| 44 | CTSPSolver::CTSPSolver(QObject *parent) |
---|
[149] | 45 | : QObject(parent), cc(true), nCities(0), total(0), root(NULL) {} |
---|
[116] | 46 | |
---|
| 47 | /*! |
---|
| 48 | * \brief Cleans up the object and frees up memory used by the solution tree. |
---|
| 49 | * \param processEvents If set to \c true then \link QCoreApplication::processEvents() QCoreApplication::processEvents(QEventLoop::ExcludeUserInputEvents)\endlink will be called from time to time while cleaning up. |
---|
| 50 | * \warning After call to this function a solution tree returned by the solve() function is no longer valid. |
---|
| 51 | * \note It is not required to call this function manually. This function is always called by solve() at the beginning of the solution process. |
---|
| 52 | * |
---|
[124] | 53 | * \sa solve(), setCleanupOnCancel() |
---|
[116] | 54 | */ |
---|
| 55 | void CTSPSolver::cleanup(bool processEvents) |
---|
| 56 | { |
---|
[149] | 57 | route.clear(); |
---|
| 58 | mayNotBeOptimal = false; |
---|
| 59 | if (root != NULL) |
---|
| 60 | deleteTree(root, processEvents); |
---|
[116] | 61 | } |
---|
| 62 | |
---|
| 63 | /*! |
---|
| 64 | * \brief Returns the sorted optimal path, starting from City 1. |
---|
| 65 | * \param city A string that represents city elements in the path. |
---|
| 66 | * \param separator A string that represents separators between cities in the path. |
---|
| 67 | * \return A string, containing sorted optimal path. |
---|
| 68 | * |
---|
| 69 | * The resulting path will be in the form \a city+\a separator+\a city+...+\a separator+\a city. |
---|
| 70 | * \c \%1 in \a city will be replaced by the city number. |
---|
| 71 | */ |
---|
| 72 | QString CTSPSolver::getSortedPath(const QString &city, const QString &separator) const |
---|
| 73 | { |
---|
[149] | 74 | if (!root || route.isEmpty() || (route.size() != nCities)) |
---|
| 75 | return QString(); |
---|
[116] | 76 | |
---|
| 77 | int i = 0; // We start from City 1 |
---|
| 78 | QStringList path; |
---|
[149] | 79 | path << city.arg(1); |
---|
| 80 | while ((i = route[i]) != 0) { |
---|
| 81 | path << city.arg(i + 1); |
---|
| 82 | } |
---|
| 83 | // And finish in City 1, too |
---|
| 84 | path << city.arg(1); |
---|
[116] | 85 | |
---|
[149] | 86 | return path.join(separator); |
---|
[116] | 87 | } |
---|
| 88 | |
---|
| 89 | /*! |
---|
| 90 | * \brief Returns a total number of steps in the current solution. |
---|
| 91 | * \return A total number of steps or \c 0 if no solution. |
---|
| 92 | * \note This is not always the same as the number of cities. |
---|
| 93 | */ |
---|
| 94 | int CTSPSolver::getTotalSteps() const |
---|
| 95 | { |
---|
[149] | 96 | return total; |
---|
[116] | 97 | } |
---|
| 98 | |
---|
| 99 | /*! |
---|
| 100 | * \brief Indicates whether or not the solution is definitely optimal. |
---|
| 101 | * \return \c true if the solution is definitely optimal, otherwise \c false. |
---|
| 102 | * |
---|
| 103 | * The solution may need some further iterations to determine whether or not it is optimal. |
---|
| 104 | * In such cases this function returns \c false. |
---|
| 105 | */ |
---|
| 106 | bool CTSPSolver::isOptimal() const |
---|
| 107 | { |
---|
[149] | 108 | return !mayNotBeOptimal; |
---|
[116] | 109 | } |
---|
| 110 | |
---|
| 111 | /*! |
---|
[124] | 112 | * \brief Sets whether or not to call cleanup() on solution cancel. |
---|
| 113 | * \param enable Set to \c true to enable clenup (default). |
---|
| 114 | * |
---|
| 115 | * This may be useful if you want to make cleanup yourself or provide indication of clenup to user. |
---|
| 116 | * |
---|
| 117 | * \note Please, note that cleanup() is explicitly called at the start of each solution. |
---|
| 118 | * Disabling cleanup and forgetting to do it manually may considerably increase the solution time for large tasks (with more than 15 cities). |
---|
| 119 | * \sa cleanup() |
---|
| 120 | */ |
---|
| 121 | void CTSPSolver::setCleanupOnCancel(bool enable) |
---|
| 122 | { |
---|
[149] | 123 | cc = enable; |
---|
[124] | 124 | } |
---|
| 125 | |
---|
| 126 | /*! |
---|
[116] | 127 | * \brief Solves the given task. |
---|
| 128 | * \param numCities Number of cities in the task. |
---|
| 129 | * \param task The matrix of city-to-city travel costs. |
---|
| 130 | * \return Pointer to the root of the solution tree. |
---|
| 131 | * |
---|
| 132 | * \todo TODO: Comment the algorithm. |
---|
| 133 | */ |
---|
| 134 | SStep *CTSPSolver::solve(int numCities, const TMatrix &task) |
---|
| 135 | { |
---|
[149] | 136 | if (numCities < 3) |
---|
| 137 | return NULL; |
---|
[116] | 138 | |
---|
| 139 | QMutexLocker locker(&mutex); |
---|
[149] | 140 | cleanup(); |
---|
| 141 | canceled = false; |
---|
| 142 | locker.unlock(); |
---|
[116] | 143 | |
---|
[149] | 144 | nCities = numCities; |
---|
[116] | 145 | |
---|
| 146 | SStep *step = new SStep(); |
---|
[149] | 147 | step->matrix = task; |
---|
| 148 | // We need to distinguish the values forbidden by the user |
---|
| 149 | // from the values forbidden by the algorithm. |
---|
| 150 | // So we replace user's infinities by the maximum available double value. |
---|
| 151 | normalize(step->matrix); |
---|
[116] | 152 | #ifdef DEBUG |
---|
[149] | 153 | qDebug() << step->matrix; |
---|
[116] | 154 | #endif // DEBUG |
---|
[149] | 155 | step->price = align(step->matrix); |
---|
| 156 | root = step; |
---|
[116] | 157 | |
---|
| 158 | SStep *left, *right; |
---|
| 159 | int nRow, nCol; |
---|
| 160 | bool firstStep = true; |
---|
| 161 | double check = INFINITY; |
---|
[149] | 162 | total = 0; |
---|
| 163 | while (route.size() < nCities) { |
---|
| 164 | step->alts = findCandidate(step->matrix,nRow,nCol); |
---|
[116] | 165 | |
---|
[149] | 166 | while (hasSubCycles(nRow,nCol)) { |
---|
[116] | 167 | #ifdef DEBUG |
---|
[149] | 168 | qDebug() << "Forbidden: (" << nRow << ";" << nCol << ")"; |
---|
[116] | 169 | #endif // DEBUG |
---|
[149] | 170 | step->matrix[nRow][nCol] = INFINITY; |
---|
| 171 | step->price += align(step->matrix); |
---|
| 172 | step->alts = findCandidate(step->matrix,nRow,nCol); |
---|
| 173 | } |
---|
[116] | 174 | |
---|
| 175 | #ifdef DEBUG |
---|
[149] | 176 | qDebug() /*<< step->matrix*/ << "Selected: (" << nRow << ";" << nCol << ")"; |
---|
| 177 | qDebug() << "Alternate:" << step->alts; |
---|
| 178 | qDebug() << "Step price:" << step->price << endl; |
---|
[116] | 179 | #endif // DEBUG |
---|
| 180 | |
---|
[149] | 181 | locker.relock(); |
---|
| 182 | if ((nRow == -1) || (nCol == -1) || canceled) { |
---|
| 183 | if (canceled && cc) |
---|
| 184 | cleanup(); |
---|
| 185 | return NULL; |
---|
| 186 | } |
---|
| 187 | locker.unlock(); |
---|
[116] | 188 | |
---|
[149] | 189 | // Route with (nRow,nCol) path |
---|
| 190 | right = new SStep(); |
---|
| 191 | right->pNode = step; |
---|
| 192 | right->matrix = step->matrix; |
---|
| 193 | for (int k = 0; k < nCities; k++) { |
---|
| 194 | if (k != nCol) |
---|
| 195 | right->matrix[nRow][k] = INFINITY; |
---|
| 196 | if (k != nRow) |
---|
| 197 | right->matrix[k][nCol] = INFINITY; |
---|
| 198 | } |
---|
| 199 | right->price = step->price + align(right->matrix); |
---|
| 200 | // Forbid the selected route to exclude its reuse in next steps. |
---|
| 201 | right->matrix[nCol][nRow] = INFINITY; |
---|
| 202 | right->matrix[nRow][nCol] = INFINITY; |
---|
[116] | 203 | |
---|
[149] | 204 | // Route without (nRow,nCol) path |
---|
| 205 | left = new SStep(); |
---|
| 206 | left->pNode = step; |
---|
| 207 | left->matrix = step->matrix; |
---|
| 208 | left->matrix[nRow][nCol] = INFINITY; |
---|
| 209 | left->price = step->price + align(left->matrix); |
---|
[116] | 210 | |
---|
[149] | 211 | step->candidate.nRow = nRow; |
---|
| 212 | step->candidate.nCol = nCol; |
---|
| 213 | step->plNode = left; |
---|
| 214 | step->prNode = right; |
---|
[116] | 215 | |
---|
[149] | 216 | // This matrix is not used anymore. Restoring infinities back. |
---|
| 217 | denormalize(step->matrix); |
---|
[116] | 218 | |
---|
[149] | 219 | if (right->price <= left->price) { |
---|
| 220 | // Route with (nRow,nCol) path is cheaper |
---|
| 221 | step->next = SStep::RightBranch; |
---|
| 222 | step = right; |
---|
| 223 | route[nRow] = nCol; |
---|
| 224 | emit routePartFound(route.size()); |
---|
| 225 | if (firstStep) { |
---|
| 226 | check = left->price; |
---|
| 227 | firstStep = false; |
---|
| 228 | } |
---|
| 229 | } else { |
---|
| 230 | // Route without (nRow,nCol) path is cheaper |
---|
| 231 | step->next = SStep::LeftBranch; |
---|
| 232 | step = left; |
---|
| 233 | QCoreApplication::processEvents(); |
---|
| 234 | if (firstStep) { |
---|
| 235 | check = right->price; |
---|
| 236 | firstStep = false; |
---|
| 237 | } |
---|
| 238 | } |
---|
| 239 | total++; |
---|
| 240 | } |
---|
[116] | 241 | |
---|
[149] | 242 | mayNotBeOptimal = (check < step->price); |
---|
[116] | 243 | |
---|
[149] | 244 | return root; |
---|
[116] | 245 | } |
---|
| 246 | |
---|
| 247 | /*! |
---|
| 248 | * \brief Indicates whether or not the solution process was canceled. |
---|
| 249 | * \return \c true if the solution process was canceled, otherwise \c false. |
---|
| 250 | */ |
---|
| 251 | bool CTSPSolver::wasCanceled() const |
---|
| 252 | { |
---|
| 253 | QMutexLocker locker(&mutex); |
---|
[149] | 254 | return canceled; |
---|
[116] | 255 | } |
---|
| 256 | |
---|
| 257 | /*! |
---|
| 258 | * \brief Cancels the solution process. |
---|
| 259 | */ |
---|
| 260 | void CTSPSolver::cancel() |
---|
| 261 | { |
---|
| 262 | QMutexLocker locker(&mutex); |
---|
[149] | 263 | canceled = true; |
---|
[116] | 264 | } |
---|
| 265 | |
---|
| 266 | CTSPSolver::~CTSPSolver() |
---|
| 267 | { |
---|
[149] | 268 | if (root != NULL) |
---|
| 269 | deleteTree(root); |
---|
[116] | 270 | } |
---|
| 271 | |
---|
| 272 | /* Privates **********************************************************/ |
---|
| 273 | |
---|
| 274 | double CTSPSolver::align(TMatrix &matrix) |
---|
| 275 | { |
---|
| 276 | double r = 0; |
---|
| 277 | double min; |
---|
[149] | 278 | for (int k = 0; k < nCities; k++) { |
---|
| 279 | min = findMinInRow(k,matrix); |
---|
| 280 | if (min > 0) { |
---|
| 281 | r += min; |
---|
| 282 | if (min < MAX_DOUBLE) |
---|
| 283 | subRow(matrix,k,min); |
---|
| 284 | } |
---|
| 285 | } |
---|
| 286 | for (int k = 0; k < nCities; k++) { |
---|
| 287 | min = findMinInCol(k,matrix); |
---|
| 288 | if (min > 0) { |
---|
| 289 | r += min; |
---|
| 290 | if (min < MAX_DOUBLE) |
---|
| 291 | subCol(matrix,k,min); |
---|
| 292 | } |
---|
| 293 | } |
---|
| 294 | return (r != MAX_DOUBLE) ? r : INFINITY; |
---|
[116] | 295 | } |
---|
| 296 | |
---|
| 297 | void CTSPSolver::deleteTree(SStep *&root, bool processEvents) |
---|
| 298 | { |
---|
[149] | 299 | if (root == NULL) |
---|
| 300 | return; |
---|
[116] | 301 | SStep *step = root; |
---|
| 302 | SStep *parent; |
---|
[149] | 303 | forever { |
---|
| 304 | if (processEvents) |
---|
| 305 | QCoreApplication::processEvents(QEventLoop::ExcludeUserInputEvents); |
---|
| 306 | if (step->plNode != NULL) { |
---|
| 307 | // We have left child node - going inside it |
---|
| 308 | step = step->plNode; |
---|
| 309 | step->pNode->plNode = NULL; |
---|
| 310 | continue; |
---|
| 311 | } else if (step->prNode != NULL) { |
---|
| 312 | // We have right child node - going inside it |
---|
| 313 | step = step->prNode; |
---|
| 314 | step->pNode->prNode = NULL; |
---|
| 315 | continue; |
---|
| 316 | } else { |
---|
| 317 | // We have no child nodes. Deleting the current one. |
---|
| 318 | parent = step->pNode; |
---|
| 319 | delete step; |
---|
| 320 | if (parent != NULL) { |
---|
| 321 | // Going back to the parent node. |
---|
| 322 | step = parent; |
---|
| 323 | } else { |
---|
| 324 | // We came back to the root node. Finishing. |
---|
| 325 | root = NULL; |
---|
| 326 | break; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | } |
---|
[116] | 330 | } |
---|
| 331 | |
---|
| 332 | void CTSPSolver::denormalize(TMatrix &matrix) const |
---|
| 333 | { |
---|
[149] | 334 | for (int r = 0; r < nCities; r++) |
---|
| 335 | for (int c = 0; c < nCities; c++) |
---|
| 336 | if ((r != c) && (matrix.at(r).at(c) == MAX_DOUBLE)) |
---|
| 337 | matrix[r][c] = INFINITY; |
---|
[116] | 338 | } |
---|
| 339 | |
---|
| 340 | QList<SStep::SCandidate> CTSPSolver::findCandidate(const TMatrix &matrix, int &nRow, int &nCol) const |
---|
| 341 | { |
---|
[149] | 342 | nRow = -1; |
---|
| 343 | nCol = -1; |
---|
[116] | 344 | QList<SStep::SCandidate> alts; |
---|
| 345 | SStep::SCandidate cand; |
---|
| 346 | double h = -1; |
---|
| 347 | double sum; |
---|
[149] | 348 | for (int r = 0; r < nCities; r++) |
---|
| 349 | for (int c = 0; c < nCities; c++) |
---|
| 350 | if (matrix.at(r).at(c) == 0) { |
---|
| 351 | sum = findMinInRow(r,matrix,c) + findMinInCol(c,matrix,r); |
---|
| 352 | if (sum > h) { |
---|
| 353 | h = sum; |
---|
| 354 | nRow = r; |
---|
| 355 | nCol = c; |
---|
| 356 | alts.clear(); |
---|
| 357 | } else if ((sum == h) && !hasSubCycles(r,c)) { |
---|
| 358 | cand.nRow = r; |
---|
| 359 | cand.nCol = c; |
---|
| 360 | alts.append(cand); |
---|
| 361 | } |
---|
| 362 | } |
---|
| 363 | return alts; |
---|
[116] | 364 | } |
---|
| 365 | |
---|
| 366 | double CTSPSolver::findMinInCol(int nCol, const TMatrix &matrix, int exr) const |
---|
| 367 | { |
---|
| 368 | double min = INFINITY; |
---|
[149] | 369 | for (int k = 0; k < nCities; k++) |
---|
| 370 | if ((k != exr) && (min > matrix.at(k).at(nCol))) |
---|
| 371 | min = matrix.at(k).at(nCol); |
---|
| 372 | return (min == INFINITY) ? 0 : min; |
---|
[116] | 373 | } |
---|
| 374 | |
---|
| 375 | double CTSPSolver::findMinInRow(int nRow, const TMatrix &matrix, int exc) const |
---|
| 376 | { |
---|
| 377 | double min = INFINITY; |
---|
[149] | 378 | for (int k = 0; k < nCities; k++) { |
---|
| 379 | if (((k != exc)) && (min > matrix.at(nRow).at(k))) |
---|
| 380 | min = matrix.at(nRow).at(k); |
---|
| 381 | } |
---|
| 382 | return (min == INFINITY) ? 0 : min; |
---|
[116] | 383 | } |
---|
| 384 | |
---|
| 385 | bool CTSPSolver::hasSubCycles(int nRow, int nCol) const |
---|
| 386 | { |
---|
[149] | 387 | if ((nRow < 0) || (nCol < 0) || route.isEmpty() || !(route.size() < nCities - 1) || !route.contains(nCol)) |
---|
| 388 | return false; |
---|
[116] | 389 | int i = nCol; |
---|
[149] | 390 | forever { |
---|
| 391 | if ((i = route.value(i)) == nRow) |
---|
| 392 | return true; |
---|
| 393 | if (!route.contains(i)) |
---|
| 394 | return false; |
---|
| 395 | } |
---|
| 396 | return false; |
---|
[116] | 397 | } |
---|
| 398 | |
---|
| 399 | void CTSPSolver::normalize(TMatrix &matrix) const |
---|
| 400 | { |
---|
[149] | 401 | for (int r = 0; r < nCities; r++) |
---|
| 402 | for (int c = 0; c < nCities; c++) |
---|
| 403 | if ((r != c) && (matrix.at(r).at(c) == INFINITY)) |
---|
| 404 | matrix[r][c] = MAX_DOUBLE; |
---|
[116] | 405 | } |
---|
| 406 | |
---|
| 407 | void CTSPSolver::subCol(TMatrix &matrix, int nCol, double val) |
---|
| 408 | { |
---|
[149] | 409 | for (int k = 0; k < nCities; k++) |
---|
| 410 | if (k != nCol) |
---|
| 411 | matrix[k][nCol] -= val; |
---|
[116] | 412 | } |
---|
| 413 | |
---|
| 414 | void CTSPSolver::subRow(TMatrix &matrix, int nRow, double val) |
---|
| 415 | { |
---|
[149] | 416 | for (int k = 0; k < nCities; k++) |
---|
| 417 | if (k != nRow) |
---|
| 418 | matrix[nRow][k] -= val; |
---|
[116] | 419 | } |
---|
| 420 | |
---|
| 421 | } |
---|
| 422 | |
---|
| 423 | #ifdef DEBUG |
---|
| 424 | QDebug operator<<(QDebug dbg, const TSPSolver::TMatrix &matrix) |
---|
| 425 | { |
---|
[149] | 426 | for (int r = 0; r < matrix.count(); r++) { |
---|
| 427 | for (int c = 0; c < matrix.at(r).count(); c++) |
---|
| 428 | dbg.space() << QString::number(matrix.at(r).at(c)).leftJustified(5); |
---|
| 429 | dbg << endl; |
---|
| 430 | } |
---|
| 431 | return dbg; |
---|
[116] | 432 | } |
---|
| 433 | |
---|
| 434 | QDebug operator<<(QDebug dbg, const TSPSolver::SStep::SCandidate &cand) |
---|
| 435 | { |
---|
[149] | 436 | dbg.nospace() << "(" << cand.nRow << ";" << cand.nCol << ")"; |
---|
| 437 | return dbg; |
---|
[116] | 438 | } |
---|
| 439 | #endif // DEBUG |
---|