/* * TSPSG: TSP Solver and Generator * Copyright (C) 2007-2010 Lёppa * * $Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $ * $URL: https://tspsg.svn.sourceforge.net/svnroot/tspsg/trunk/src/tspsolver.cpp $ * * This file is part of TSPSG. * * TSPSG is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * TSPSG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with TSPSG. If not, see . */ #include "tspsolver.h" //! \internal \brief A short for maximum double, used internally in the solution algorithm. #define MAX_DOUBLE std::numeric_limits::max() namespace TSPSolver { /*! * \brief Returns CTSPSolver's version ID. * \return A string: \$Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $. */ QString CTSPSolver::getVersionId() { return QString("$Id: tspsolver.cpp 149 2010-12-20 20:53:45Z laleppa $"); } /*! * \brief Constructs CTSPSolver object. * \param parent A parent object. */ CTSPSolver::CTSPSolver(QObject *parent) : QObject(parent), cc(true), nCities(0), total(0), root(NULL) {} /*! * \brief Cleans up the object and frees up memory used by the solution tree. * \param processEvents If set to \c true then \link QCoreApplication::processEvents() QCoreApplication::processEvents(QEventLoop::ExcludeUserInputEvents)\endlink will be called from time to time while cleaning up. * \warning After call to this function a solution tree returned by the solve() function is no longer valid. * \note It is not required to call this function manually. This function is always called by solve() at the beginning of the solution process. * * \sa solve(), setCleanupOnCancel() */ void CTSPSolver::cleanup(bool processEvents) { route.clear(); mayNotBeOptimal = false; if (root != NULL) deleteTree(root, processEvents); } /*! * \brief Returns the sorted optimal path, starting from City 1. * \param city A string that represents city elements in the path. * \param separator A string that represents separators between cities in the path. * \return A string, containing sorted optimal path. * * The resulting path will be in the form \a city+\a separator+\a city+...+\a separator+\a city. * \c \%1 in \a city will be replaced by the city number. */ QString CTSPSolver::getSortedPath(const QString &city, const QString &separator) const { if (!root || route.isEmpty() || (route.size() != nCities)) return QString(); int i = 0; // We start from City 1 QStringList path; path << city.arg(1); while ((i = route[i]) != 0) { path << city.arg(i + 1); } // And finish in City 1, too path << city.arg(1); return path.join(separator); } /*! * \brief Returns a total number of steps in the current solution. * \return A total number of steps or \c 0 if no solution. * \note This is not always the same as the number of cities. */ int CTSPSolver::getTotalSteps() const { return total; } /*! * \brief Indicates whether or not the solution is definitely optimal. * \return \c true if the solution is definitely optimal, otherwise \c false. * * The solution may need some further iterations to determine whether or not it is optimal. * In such cases this function returns \c false. */ bool CTSPSolver::isOptimal() const { return !mayNotBeOptimal; } /*! * \brief Sets whether or not to call cleanup() on solution cancel. * \param enable Set to \c true to enable clenup (default). * * This may be useful if you want to make cleanup yourself or provide indication of clenup to user. * * \note Please, note that cleanup() is explicitly called at the start of each solution. * Disabling cleanup and forgetting to do it manually may considerably increase the solution time for large tasks (with more than 15 cities). * \sa cleanup() */ void CTSPSolver::setCleanupOnCancel(bool enable) { cc = enable; } /*! * \brief Solves the given task. * \param numCities Number of cities in the task. * \param task The matrix of city-to-city travel costs. * \return Pointer to the root of the solution tree. * * \todo TODO: Comment the algorithm. */ SStep *CTSPSolver::solve(int numCities, const TMatrix &task) { if (numCities < 3) return NULL; QMutexLocker locker(&mutex); cleanup(); canceled = false; locker.unlock(); nCities = numCities; SStep *step = new SStep(); step->matrix = task; // We need to distinguish the values forbidden by the user // from the values forbidden by the algorithm. // So we replace user's infinities by the maximum available double value. normalize(step->matrix); #ifdef DEBUG qDebug() << step->matrix; #endif // DEBUG step->price = align(step->matrix); root = step; SStep *left, *right; int nRow, nCol; bool firstStep = true; double check = INFINITY; total = 0; while (route.size() < nCities) { step->alts = findCandidate(step->matrix,nRow,nCol); while (hasSubCycles(nRow,nCol)) { #ifdef DEBUG qDebug() << "Forbidden: (" << nRow << ";" << nCol << ")"; #endif // DEBUG step->matrix[nRow][nCol] = INFINITY; step->price += align(step->matrix); step->alts = findCandidate(step->matrix,nRow,nCol); } #ifdef DEBUG qDebug() /*<< step->matrix*/ << "Selected: (" << nRow << ";" << nCol << ")"; qDebug() << "Alternate:" << step->alts; qDebug() << "Step price:" << step->price << endl; #endif // DEBUG locker.relock(); if ((nRow == -1) || (nCol == -1) || canceled) { if (canceled && cc) cleanup(); return NULL; } locker.unlock(); // Route with (nRow,nCol) path right = new SStep(); right->pNode = step; right->matrix = step->matrix; for (int k = 0; k < nCities; k++) { if (k != nCol) right->matrix[nRow][k] = INFINITY; if (k != nRow) right->matrix[k][nCol] = INFINITY; } right->price = step->price + align(right->matrix); // Forbid the selected route to exclude its reuse in next steps. right->matrix[nCol][nRow] = INFINITY; right->matrix[nRow][nCol] = INFINITY; // Route without (nRow,nCol) path left = new SStep(); left->pNode = step; left->matrix = step->matrix; left->matrix[nRow][nCol] = INFINITY; left->price = step->price + align(left->matrix); step->candidate.nRow = nRow; step->candidate.nCol = nCol; step->plNode = left; step->prNode = right; // This matrix is not used anymore. Restoring infinities back. denormalize(step->matrix); if (right->price <= left->price) { // Route with (nRow,nCol) path is cheaper step->next = SStep::RightBranch; step = right; route[nRow] = nCol; emit routePartFound(route.size()); if (firstStep) { check = left->price; firstStep = false; } } else { // Route without (nRow,nCol) path is cheaper step->next = SStep::LeftBranch; step = left; QCoreApplication::processEvents(); if (firstStep) { check = right->price; firstStep = false; } } total++; } mayNotBeOptimal = (check < step->price); return root; } /*! * \brief Indicates whether or not the solution process was canceled. * \return \c true if the solution process was canceled, otherwise \c false. */ bool CTSPSolver::wasCanceled() const { QMutexLocker locker(&mutex); return canceled; } /*! * \brief Cancels the solution process. */ void CTSPSolver::cancel() { QMutexLocker locker(&mutex); canceled = true; } CTSPSolver::~CTSPSolver() { if (root != NULL) deleteTree(root); } /* Privates **********************************************************/ double CTSPSolver::align(TMatrix &matrix) { double r = 0; double min; for (int k = 0; k < nCities; k++) { min = findMinInRow(k,matrix); if (min > 0) { r += min; if (min < MAX_DOUBLE) subRow(matrix,k,min); } } for (int k = 0; k < nCities; k++) { min = findMinInCol(k,matrix); if (min > 0) { r += min; if (min < MAX_DOUBLE) subCol(matrix,k,min); } } return (r != MAX_DOUBLE) ? r : INFINITY; } void CTSPSolver::deleteTree(SStep *&root, bool processEvents) { if (root == NULL) return; SStep *step = root; SStep *parent; forever { if (processEvents) QCoreApplication::processEvents(QEventLoop::ExcludeUserInputEvents); if (step->plNode != NULL) { // We have left child node - going inside it step = step->plNode; step->pNode->plNode = NULL; continue; } else if (step->prNode != NULL) { // We have right child node - going inside it step = step->prNode; step->pNode->prNode = NULL; continue; } else { // We have no child nodes. Deleting the current one. parent = step->pNode; delete step; if (parent != NULL) { // Going back to the parent node. step = parent; } else { // We came back to the root node. Finishing. root = NULL; break; } } } } void CTSPSolver::denormalize(TMatrix &matrix) const { for (int r = 0; r < nCities; r++) for (int c = 0; c < nCities; c++) if ((r != c) && (matrix.at(r).at(c) == MAX_DOUBLE)) matrix[r][c] = INFINITY; } QList CTSPSolver::findCandidate(const TMatrix &matrix, int &nRow, int &nCol) const { nRow = -1; nCol = -1; QList alts; SStep::SCandidate cand; double h = -1; double sum; for (int r = 0; r < nCities; r++) for (int c = 0; c < nCities; c++) if (matrix.at(r).at(c) == 0) { sum = findMinInRow(r,matrix,c) + findMinInCol(c,matrix,r); if (sum > h) { h = sum; nRow = r; nCol = c; alts.clear(); } else if ((sum == h) && !hasSubCycles(r,c)) { cand.nRow = r; cand.nCol = c; alts.append(cand); } } return alts; } double CTSPSolver::findMinInCol(int nCol, const TMatrix &matrix, int exr) const { double min = INFINITY; for (int k = 0; k < nCities; k++) if ((k != exr) && (min > matrix.at(k).at(nCol))) min = matrix.at(k).at(nCol); return (min == INFINITY) ? 0 : min; } double CTSPSolver::findMinInRow(int nRow, const TMatrix &matrix, int exc) const { double min = INFINITY; for (int k = 0; k < nCities; k++) { if (((k != exc)) && (min > matrix.at(nRow).at(k))) min = matrix.at(nRow).at(k); } return (min == INFINITY) ? 0 : min; } bool CTSPSolver::hasSubCycles(int nRow, int nCol) const { if ((nRow < 0) || (nCol < 0) || route.isEmpty() || !(route.size() < nCities - 1) || !route.contains(nCol)) return false; int i = nCol; forever { if ((i = route.value(i)) == nRow) return true; if (!route.contains(i)) return false; } return false; } void CTSPSolver::normalize(TMatrix &matrix) const { for (int r = 0; r < nCities; r++) for (int c = 0; c < nCities; c++) if ((r != c) && (matrix.at(r).at(c) == INFINITY)) matrix[r][c] = MAX_DOUBLE; } void CTSPSolver::subCol(TMatrix &matrix, int nCol, double val) { for (int k = 0; k < nCities; k++) if (k != nCol) matrix[k][nCol] -= val; } void CTSPSolver::subRow(TMatrix &matrix, int nRow, double val) { for (int k = 0; k < nCities; k++) if (k != nRow) matrix[nRow][k] -= val; } } #ifdef DEBUG QDebug operator<<(QDebug dbg, const TSPSolver::TMatrix &matrix) { for (int r = 0; r < matrix.count(); r++) { for (int c = 0; c < matrix.at(r).count(); c++) dbg.space() << QString::number(matrix.at(r).at(c)).leftJustified(5); dbg << endl; } return dbg; } QDebug operator<<(QDebug dbg, const TSPSolver::SStep::SCandidate &cand) { dbg.nospace() << "(" << cand.nRow << ";" << cand.nCol << ")"; return dbg; } #endif // DEBUG