Source: tspsg Section: user/hidden Priority: optional Maintainer: Oleksii Serdiuk Homepage: http://tspsg.info/ Standards-Version: 3.7.3 Build-Depends: debhelper (>= 5), libqt4-dev Package: tspsg Architecture: any Depends: ${shlibs:Depends}, ${misc:Depends} Description: TSP Solver and Generator TSPSG is intended to generate and solve Travelling Salesman Problem (TSP) tasks. It uses Branch and Bound method for solving. Its input is a number of cities and a matrix of city-to-city travel costs. The matrix can be populated with random values in a given range (which is useful for generating tasks). The result is an optimal route, its price, step-by-step matrices of solving and a solving graph. The task can be saved in an internal binary format and opened later. The result can be printed or saved as PDF, HTML, or ODF. . TSPSG may be useful for teachers to generate test tasks or just for regular users to solve TSPs. Also, it may be used as an example of using Branch and Bound method to solve a particular task. XB-Maemo-Display-Name: TSPSG XB-Maemo-Icon-26: iVBORw0KGgoAAAANSUhEUgAAADAAAAAwCAIAAADYYG7QAAAAA3NCSVQICAjb4U/gAAAACXBIWXMAAA0SAAANOgHo3ZneAAAN5UlEQVRYhZ0ZbWhaZ/dJKttNYsiFKvEuui0skrlpYJcm1DIl2GDKXA1EUIYMC4VeoT8SmsCky9BCfmSQhZStoJRAkiIjZY5dqYMIumJWZQmRLdK5eDNCl6RXokSXSHPXynx/nPXpfdOvve/5Id7nPs855znf51xUew74/f5kMnl4eOj1enO5HMuyLMuK38Lv4OAgrMOeWq0Gv16vN5lMsiyby+XEaI88Pg3o6aXDw0O/3y8mD5BMJmu1WiwWg8dSqQSEYdHv98diMZZl/X4/vAKmxWiBv2Qy+Ty2SqWSBD2GcrlcKBTkcjlJkmq1uqGhIZVKzc7OUhQFGzKZjE6nW1lZ4TiOYRiSJOPxOBx85513GhoaZDIZHC+Xy4IgdHV1cRynUqkIgkAICYJgtVoDgQBFUXq9HiEUj8cbGhrgP0IolUrJZLInDGWzWZlMhhAKh8PpdNrn8yGECoWC1Wq1WCyCIMRiMdjJMAy8pWmapulCoaBSqQqFwuTkpNlsZhimUChsbW1VKpVCoaBWq+HUwsICQojneUzC6XQ2NzcjhDiOg23FYvEJQ3q9PpVKBYNBnuctFgvsk8vlNptNEASE0OnTp2OxmM/nCwQC+E6YpFwuD4VCgUAAeIVfjuOQCBiGAYlOT09TFBUMBmmalsvla2tr2WyW53mGYepqtRoQSKfTDodDpVKBkEGAwWBwaWkJYyRJcmJiIpvNWq1WoEpRVDQahbczMzOJREKj0WSz2UgkArqmKCqdTlMUBSymUqnFxUXMMYZwOCyVSk0mE8JGmsvlwDAPDw/FJmkSATZP2BOLxXK5HPzHhg+P4AG1Wo1l2QsXLgDCXC7H87zYisG6S6WS1+sFv37iZaVSSYwa78bcfPDBByaTyev1Dg4O4kUgDL5We+zzwCtg83q9cBPMIgae5/FBDHWlUgnkXCwW9Xp9OBzGvhCJRMCYeJ4Ph8MEQZTLZbvd3tXVVSgUjEZjIpGwWq1gSXK5HCG0uLjo8/ny+bxCoUilUmtrayaTCVxPrB2e53medzqdoP1AINDV1QV2XFer1RBCgUAgHA4rlUqKomiajkQio6OjW1tbDQ0NY2Nj2ICAIZ7naZpOp9NLS0vBYNDr9QYCAWCL53mTyTQ8PByJROAUMAcxBTymWCyWy2WSJHU6ndFo5DjO4XBgjutqtVo4HEYI9fT0LC8vi42RoqirV6+i/waCILq7u5eWloA/MPNgMOjxeObm5sTyCIfDGo0GfLBcLicSiZ6eHpZlBwYGFAoFYMMuCRsQQnUsy8rlco1GY7PZEEJ+v1+tVp8+fRq9EIaGhnieB9QgA/wqn88TBEGSpM/no2ka/BEglUqBXsTqww4LGqyr1WpwUZ/Pl8lkXC7X01J5AWCB2e32mzdvIoRAp1jM8F/MFnC2traGEOJ5Hvs/KF3CcVw2mzUajQghs9kciURisdhLJYRBqVRCvAaSJpMJh2abzRYKhUAqoD6Iful0ent7e2RkRKVSwU6fz9ff36/X6+PxuATOkyRJUZTL5QKH+vcSKhaLYCjgO2q1GpuFy+WCRQjQgUAgnU4HHgN6HFfj8ThFUYVCwWKxzMzM/ONlCKF4PH7t2rWZmRm43L/nyW63DwwMsCyLEAIFgaaAD7je3NycTCYD36QoamVlpbu7+4iFIYTy+byEYRiLxSKVSiHvZLNZjUbz77mJxWL5fH5zcxNSBIQMi8ViMpk4jpucnARhHCEMYLPZrFarWIrLy8v1gUDAarVyHMfzfLlc1uv1UC28FAiCGBoaQggpFIrFxUW5XE7TNM/zgFCtVgeDQeAGhISzcjgcFluF0Wh0uVz48RhCaH19HUR9+fJlqVQ6Pj7+xx9/PI8PkiTHxsYePXp0/fr1qamp2dnZhoYGiqLq6+vPnDlz4sQJhJAgCCsrKydPnjx+/Hg+n9/Z2dnZ2bl3797AwMDe3t6pU6fW19enpqZu3LiBEIpGo++++y4gn5qaOnb79m2tVqvVatfX19va2nK53Ozs7IsFMzIysr+/39nZefbs2ddff/3BgwfpdPr999+/c+fO7du3V1dXa7Xa4uIiGGI8HrdarZlMhmGYb775ZnNz88SJE52dnaurq19//XWtVgOtdXZ2IoSamprqBgcHQ6GQIAhOp1MQBEhYL1YWxGiEUEdHx8bGBkEQSqVyY2MDssEzj4A2KYoCl2QY5ty5c+IICTVaOBx+kssYhoGcCoFxaGjoeRHSYDAYjUaoWQF7sVgMhUIIIYvFwjAMVIPFYnFtbQ2HPghI7e3tBwcHbrfbYDAANvBKs9kcjUaNRmO9mBLDMNgdoNZ8Jvh8vkQiMTY2Njk5iRA6d+4ccOPz+UZGRqxWq8/nCwaDkGs9Hg+cWlxcLBQKv/76q8fjsdvtCKH+/n6apuHtxMQEQiidTtf5/X64BAhNEAQoOV4AsVgslUqBwH0+3/DwMGQeo9GoUqmam5s3NzehkpHL5VCVgxLgkplMBvDodDqe50dHR7PZrFQqBZEfu379+ocffhgIBMxmM0JIIpHMz8+Pj4+n02kopZ+Gzc3NBw8edHR0RKNRnucfPnxYX1//2muvxePxYrHY29v7/fffg+WqVKqWlpZ4PL6+vp5IJCqVym+//VatViuViiAI+/v7jY2N8/PzP/30UyaTicfjr7zySl2tVmMYBowOigpM+HnWHYlEcKwCuWLpEgTh8/l4nr9y5crBwQE2o0wmI5PJisUiRourF0EQ8M3Hx8frw+Hw1atXKYqC/Foul+EACAzvEzMkjpyQCpubm6GkhIhHUdTFixc9Hs/Y2BhIESG0sbEBtOHO5XKZIAhgBRB++umner1eglWLszTshloCoL29XcwQULVarfF4vFKpQHrieX5ubk6n0+EuhSRJHCBAeEfCCnAD/IVCIbhPfTAYZBiGoigo2J4JFy9eFD+CkXIcZzKZgBtgCCGUyWQIgoACDUiCUmARM4GBJElQBby1Wq31JEnm83mpVHqkURKDWH0IIZ/Pp9FoPB4PtNIIoUgksr29DR00BuiDgZtnooVAmk6nXS4XpLlAIFDHsmxPTw/UoE/XZSDnYDDodDoxFihRSJKEri+TyTxt/lgw8MpgMIAq4Q+0LgghaFfGx8cjkQh4hgS6EHEp+UzABigIwvnz5yFFAA2xAPA2bLOgLIqiSJJ0uVzpdJogiGg0mk6nR0dHoZDt7u4Oh8PgVXU8zysUCihkQfgbGxtiVsDcCIIA+RkMBp7nj+x5wR0MBgPEFJioFAoF9Lheoygqk8mYzWZc1snl8mNSqbS3tzeXy/3+++8cx33xxRfJZLKvr+/u3bsY9ZtvvlmpVL799luE0P7+/v3791/KDUJIIpHo9fqlpaX19fU///zz7t27P//88w8//HDp0qVwOHzjxo2///7b4/G0tLTYbDalUrmzs6PVautpmhYEAfIORVEWiwVSLE5+JpPp/Pnzfr8fHl9aC2AQBIGmabvdHgqFaJq+cuUKRVFKpTKRSOh0Oo7jIF4Hg0GO4/x+P5hy3YULFywWC3ADrgtNLkLI7XYD6iPx9KUAKtbpdB6PB2I3tJEul6tcLrMsC5EsGAwuLCy4XC6n0wmjHJfLVef3+wcGBqABhdkKFJRms/mlWRaJrBiD3W43mUzFYnFyctLlcoGpTk9PDw8PJxIJqVSaSCTcbvfBwUE2m+3p6QGfAM62trbqo9GoQqGYm5sDL3O5XJFIxGq1HvGdZ3IDkhOvGAyGaDS6tbUlk8lkMpnVal1YWBAEgaKohYUFjUZTqVTcbvfy8nJzc7NGo1EoFCBOh8MBk6djQ0ND9+/ft9lsEonk0aNHP/7442effTYxMdHb2zs/Pw809vb2EELVahWodnR0wIp40W639/X1DQwM2Gw2juNomt7d3VUqlW+//Tb0821tbfF4vKen5+HDh9Fo9Pjx42+88cbQ0BCUMQRB9PX1dXZ21rtcLqlUKggClDgURREEwfN8Pp8HSisrK2IDstvt29vb8B8vQp8JfwiCMBqN0WjU4XAcHByQJAnDDblc7nA4YL/b7Yb8+Pnnn/v9fjgFr45JJJKPPvpIIpFUq9U7d+5wHNfU1HTr1i21Wg1xr1qtYjEghP7666/d3d0jRtPY2OhwOFpbWz/55BOtVtvU1NTZ2QnlUVtbW6FQ+O677zo6Or766isI0JcuXapWq1qtdnp62uPxzMzM7O/vT0xMnD179knnCgA5JRqNit0bTxSO2JDdbnc4HNPT09CS9vf3v/fee4IgwARMpVLh6gJsH8I3epzgwAS3tragsIRy4xhN0y0tLcvLy9Vq9csvv+Q4bmlpCQ6AYDo6OnZ3dy9fvnzr1i1syAaD4eOPP3711VdbW1sbGxvPnDlz8uTJaDT6yy+/7O3tmc3m/f391tbWcrksk8lmZma0Wm00Gn3rrbey2SzUuCqVKpFIyOXy1dXVe/funTp1CiFULpfrarWaeMAjCMLc3BxC6ObNm3Cza9euOZ3O8fFxyKOQw8VDLY1GEwwG3W43rn5YloVGQhCEbDbb3t5OkiQMa7Gfg0ig2wFW/vHZIzNH+K4Qi8VgLHrkGwDLsqVSCb4f1B5/XcAzU4zhyGQTjzvxKxiwwiPLsvDVAQa0SDxwxSQBu5genhID9mQyCZRg7ArTYPj+AoNijOQFkMvlSqVS8jEAD08kdHh4CHNnPNp9Jkbx4ks/7fwfcNTLcMMFMy/4ZAFDY5lMhnuuVCoFPai4Ese2yHEcTHChtUX/C/wHAswmZmQrIVUAAAAASUVORK5CYII=